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Abstract. We propose data profiles as a tool for analyzing the performance of derivative-free
optimization solvers when there are constraints on the computational budget. We use performance
and data profiles, together with a convergence test that measures the decrease in function value, to
analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth problems.
Our results provide estimates for the performance difference between these solvers, and show that
on these problems, the model-based solver tested performs better than the two direct search solvers
tested.
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1. Introduction. Derivative-free optimization has experienced a renewed inter-
est over the past decade that has encouraged a new wave of theory and algorithms.
While this research includes computational experiments that compare and explore the
properties of these algorithms, there is no concensus on the benchmarking procedures
that should be used to evaluate derivative-free algorithms.

We explore benchmarking procedures for derivative-free optimization algorithms
when there is a limited computational budget. The focus of our work is the uncon-
strained optimization problem

min {f(x) : x ∈ Rn} ,(1.1)

where f : Rn → R may be noisy or non-differentiable and, in particular, in the case
where the evaluation of f is computationally expensive. These expensive optimization
problems arise in science and engineering because evaluation of the function f often
requires a complex deterministic simulation based on solving the equations (for ex-
ample, nonlinear eigenvalue problems, ordinary or partial differential equations) that
describe the underlying physical phenomena. The computational noise associated
with these complex simulations means that obtaining derivatives is difficult and unre-
liable. Moreover, these simulations often rely on legacy or proprietary codes and hence
must be treated as black-box functions, necessitating a derivative-free optimization
algorithm.

Several comparisons have been made of derivative-free algorithms on noisy opti-
mization problems that arise in applications. In particular, we mention [7, 11, 14, 18,
22]. The most ambitious work in this direction [7] is a comparison of six derivative-
free optimization algorithms on two variations of a groundwater problem specified
by a simulator. In this work algorithms are compared by their trajectories (plot of
the best function value against the number of evaluations) until the solver satisfies a
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convergence test based on the resolution of the simulator. The work in [7] also ad-
dresses hidden constraints, regions where the function does not return a proper value,
a setting in which we have not yet applied the methodology presented here.

Benchmarking derivative-free algorithms on selected applications with trajectory
plots provides useful information to users with related applications. In particular,
users can find the solver that delivers the largest reduction within a given computa-
tional budget. However, the conclusions in these computational studies do not readily
extend to other applications. Further, when testing larger sets of problems it becomes
increasingly difficult to understand the overall performance of solvers using a single
trajectory plot for each problem.

Most researchers have relied on a selection of problems from the CUTEr [9] collec-
tion of optimization problems for their work on testing and comparing derivative-free
algorithms. Work in this direction includes [3, 14, 16, 17, 20]. The performance data
gathered in these studies is the number of function evaluations required to satisfy
a convergence test when there is a limit µf on the number of function evaluations.
The convergence test is sometimes related to the accuracy of the current iterate as an
approximation to a solution, while in other cases it is related to a parameter in the
algorithm. For example, a typical convergence test for trust region methods [3, 17, 20]
requires that the trust region radius be smaller than a given tolerance.

Users with expensive function evaluations are often interested in a convergence
test that measures the decrease in function value. In Section 2 we propose the con-
vergence test

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),(1.2)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed
for each problem as the smallest value of f obtained by any solver within a given
number µf of function evaluations. This convergence test is well suited for derivative-
free optimization because it is invariant to the affine transformation f 7→ αf + β
(α > 0) and measures the function value reduction f(x0)−f(x) achieved by x relative
to the best possible reduction f(x0)− fL.

The convergence test (1.2) was used by Marazzi and Nocedal [16] but with fL set
to an accurate estimate of f at a local minimizer obtained by a derivative-based solver.
In Section 2 we show that setting fL to an accurate estimate of f at a minimizer is
not appropriate when the evaluation of f is expensive, since no solver may be able to
satisfy (1.2) within the user’s computational budget.

We use performance profiles [5] with the convergence test (1.2) to evaluate the
performance of derivative-free solvers. Instead of using a fixed value of τ , we use
τ = 10−k with k ∈ {1, 3, 5, 7} so that a user can evaluate solver performance for
different levels of accuracy. These performance profiles are useful to users who need
to choose a solver that provides a given reduction in function value within a limit of
µf function evaluations.

To the authors’ knowledge, previous work with performance profiles has not varied
the limit µf on the number of function evaluations and has used large values for µf .
The underlying assumption has been that the long-term behavior of the algorithm is
of utmost importance. This assumption is not likely to hold, however, if the evaluation
of f is expensive.

Performance profiles were designed to compare solvers and thus use a performance
ratio instead of the number of function evaluations required to solve a problem. As
a result, performance profiles do not provide the percentage of problems that can be
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solved (for a given tolerance τ) with a given number of function evaluations. This
information is essential to users with expensive optimization problems and thus an
interest in the short-term behavior of algorithms. On the other hand, the data profiles
of Section 2 have been designed to provide this information.

The remainder of this paper is devoted to demonstrating the use of performance
and data profiles for benchmarking derivative-free optimization solvers. Section 2
reviews the use of performance profiles with the convergence test (1.2) and defines
data profiles.

Section 3 provides a brief overview of the solvers selected to illustrate the bench-
marking process: the Nelder-Mead NMSMAX code [13], the pattern-search APPSPACK

code [10], and the model-based trust region NEWUOA code [20]. Since the emphasis
of this paper is on the benchmarking process, no attempt was made to assemble a
large collection of solvers. The selection of solvers was guided mainly by a desire to
examine the performance of a representative subset of derivative-free solvers.

Section 4 describes the benchmark problems used in the computational experi-
ments. We use a selection of problems from the CUTEr [9] collection for the basic
set; but since the functions f that describe the optimization problem are invariably
smooth, with at least two continuous derivatives, we augment this basic set with
noisy and piecewise-smooth problems derived from this basic set. The choice of noisy
problems was guided by a desire to mimic simulation-based optimization problems.

The benchmarking results in Section 5 show that data and performance profiles
provide complementary information that measures the strengths and weaknesses of
optimization solvers as a function of the computational budget. Data profiles are
useful, in particular, to assess the short-term behavior of the algorithms. The results
obtained from the benchmark problems of Section 4 show that the model-based solver
NEWUOA performs better than the direct search solvers NMSMAX and APPSPACK even
for noisy and piecewise-smooth problems. These results also provide estimates for the
performance differences between these solvers.

Standard disclaimers [5] in benchmarking studies apply to the results in Section 5.
In particular, all solvers were tested with the default options, so results may change
if these defaults are changed. In a similar vein, our results apply only to the current
version of these solvers and this family of test problems, and may change with future
versions of these solvers and other families of problems.

2. Benchmarking Derivative-Free Optimization Solvers. Performance pro-
files, introduced by Dolan and Moré [5], have proved to be an important tool for
benchmarking optimization solvers. Dolan and Moré define a benchmark in terms of
a set P of benchmark problems, a set S of optimization solvers, and a convergence
test T . Once these components of a benchmark are defined, performance profiles
can be used to compare the performance of the solvers. In this section we first pro-
pose a convergence test for derivative-free optimization solvers and then examine the
relevance of performance profiles for optimization problems with expensive function
evaluations.

2.1. Performance Profiles. Performance profiles are defined in terms of a per-
formance measure tp,s > 0 obtained for each p ∈ P and s ∈ S. For example, this
measure could be based on the amount of computing time or the number of function
evaluations required to satisfy the convergence test. Larger values of tp,s indicate
worse performance. For any pair (p, s) of problem p and solver s, the performance
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ratio is defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
.

Note that the best solver for a particular problem attains the lower bound rp,s = 1.
The convention rp,s =∞ is used when solver s fails to satisfy the convergence test on
problem p.

The performance profile of a solver s ∈ S is defined as the fraction of problems
where the performance ratio is at most α, that is,

ρs(α) =
1
|P|

size
{
p ∈ P : rp,s ≤ α

}
,(2.1)

where |P| denotes the cardinality of P. Thus, a performance profile is the probability
distribution for the ratio rp,s. Performance profiles seek to capture how well the
solver performs relative to the other solvers in S on the set of problems in P. Note,
in particular, that ρs(1) is the fraction of problems for which solver s ∈ S performs
the best and that for α sufficiently large, ρs(α) is the fraction of problems solved by
s ∈ S. In general, ρs(α) is the fraction of problems with a performance ratio rp,s
bounded by α, and thus solvers with high values for ρs(α) are preferable.

Benchmarking gradient-based optimization solvers is reasonably straightforward
once the convergence test is chosen. The convergence test is invariably based on the
gradient, for example,

‖∇f(x)‖ ≤ τ‖∇f(x0)‖

for some τ > 0 and norm ‖ · ‖. This convergence test is augmented by a limit on
the amount of computing time or the number of function evaluations. The latter
requirement is needed to catch solvers that are not able to solve a given problem.

Benchmarking gradient-based solvers is usually done with a fixed choice of toler-
ance τ that yields reasonably accurate solutions on the benchmark problems. The un-
derlying assumption is that the performance of the solvers will not change significantly
with other choices of the tolerance and that, in any case, users tend to be interested
in solvers that can deliver high-accuracy solutions. In derivative-free optimization,
however, users are interested in both low-accuracy and high-accuracy solutions. In
practical situations, when the evaluation of f is expensive, a low-accuracy solution is
all that can be obtained within the user’s computational budget. Moreover, in these
situations, the accuracy of the data may warrant only a low-accuracy solution.

Benchmarking derivative-free solvers requires a convergence test that does not
depend on evaluation of the gradient. We propose to use the convergence test

f(x) ≤ fL + τ(f(x0)− fL),(2.2)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed
for each problem p ∈ P as the smallest value of f obtained by any solver within a given
number µf of function evaluations. The convergence test (2.2) can also be written as

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),

and this shows that (2.2) requires that the reduction f(x0) − f(x) achieved by x be
at least 1− τ times the best possible reduction f(x0)− fL.
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The convergence test (2.2) was used by Elster and Neumaier [6] but with fL
set to an accurate estimate of f at a global minimizer. This test was also used by
Marazzi and Nocedal [16] but with fL set to an accurate estimate of f at a local
minimizer obtained by a derivative-based solver. Setting fL to an accurate estimate
of f at a minimizer is not appropriate when the evaluation of f is expensive because
no solver may be able to satisfy (2.2) within the user’s computational budget. Even
for problems with a cheap f , a derivative-free solver is not likely to achieve accuracy
comparable to a derivative-based solver. On the other hand, if fL is the smallest value
of f obtained by any solver, then at least one solver will satisfy (2.2) for any τ ≥ 0.

An advantage of (2.2) is that it is invariant to the affine transformation f 7→ αf+β
where α > 0. Hence, we can assume, for example, that fL = 0 and f(x0) = 1.
There is no loss in generality in this assumption because derivative-free algorithms are
invariant to the affine transformation f 7→ αf + β. Indeed, algorithms for gradient-
based optimization (unconstrained and constrained) problems are also invariant to
this affine transformation.

The tolerance τ ∈ [0, 1] in (2.2) represents the percentage decrease from the start-
ing value f(x0). A value of τ = 0.1 may represent a modest decrease, a reduction
that is 90% of the total possible, while smaller values of τ correspond to larger de-
creases. As τ decreases, the accuracy of f(x) as an approximation to fL increases; the
accuracy of x as an approximation to some minimizer depends on the growth of f in
a neighborhood of the minimizer. As noted, users are interested in the performance
of derivative-free solvers for both low-accuracy and high-accuracy solutions. A user’s
expectation of the decrease possible within their computational budget will vary from
application to application.

The following new result relates the convergence test (2.2) to convergence results
for gradient-based optimization solvers.

Theorem 2.1. Assume that f : Rn 7→ R is a strictly convex quadratic and that
x∗ is the unique minimizer of f . If fL = f(x∗), then x ∈ Rn satisfies the convergence
test (2.2) if and only if

‖∇f(x)‖∗ ≤ τ1/2 ‖∇f(x0)‖∗(2.3)

for the norm ‖ · ‖∗ defined by

‖v‖∗ = ‖G− 1
2 v‖2,

and G is the Hessian matrix of f .
Proof. Since f is a quadratic, G is the Hessian matrix of f , and x∗ is the unique

minimizer,

f(x) = f(x∗) + 1
2 (x− x∗)TG(x− x∗).

Hence, the convergence test (2.2) holds if and only if

(x− x∗)TG(x− x∗) ≤ τ(x0 − x∗)TG(x0 − x∗),

which in terms of the square root G
1
2 is just

‖G 1
2 (x− x∗)‖22 ≤ τ‖G

1
2 (x0 − x∗)‖22.

We obtain (2.3) by noting that since x∗ is the minimizer of the quadratic f and G is
the Hessian matrix, ∇f(x) = G(x− x∗).
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Other variations on Theorem 2.1 are of interest. For example, it is not difficult
to show, by using the same proof techniques, that (2.2) is also equivalent to

1
2‖∇f(x)‖2∗ ≤ τ (f(x0)− f(x∗)).(2.4)

This inequality shows, in particular, that we can expect that the accuracy of x,
as measured by the gradient norm ‖∇f(x)‖∗, to increase with the square root of
f(x0)− f(x∗).

Similar estimates hold for the error in x because ∇f(x) = G(x − x∗). Thus, in
view of (2.3), the convergence test (2.2) is equivalent to

‖x− x∗‖� ≤ τ1/2 ‖x0 − x∗‖�,

where the norm ‖ · ‖� is defined by

‖v‖� = ‖G 1
2 v‖2.

In this case the accuracy of x in the ‖ · ‖� norm increases with the distance of x0 from
x∗ in the ‖ · ‖� norm.

We now explore an extension of Theorem 2.1 to nonlinear functions that is valid
for an arbitrary starting point x0. The following result shows that the convergence
test (2.2) is (asymptotically) the same as the convergence test (2.4).

Lemma 2.2. If f : Rn 7→ R is twice continuously differentiable in a neighborhood
of a minimizer x∗ with ∇2f(x∗) positive definite, then

lim
x→x∗

f(x)− f(x∗)
‖∇f(x)‖2∗

= 1
2 ,(2.5)

where the norm ‖ · ‖∗ is defined in Theorem 2.1 and G = ∇2f(x∗).
Proof. We first prove that

lim
x→x∗

‖∇2f(x∗)1/2(x− x∗)‖
‖∇f(x)‖∗

= 1.(2.6)

This result can be established by noting that since ∇2f is continuous at x∗ and
∇f(x∗) = 0,

∇f(x) = ∇2f(x∗)(x− x∗) + r1(x), r1(x) = o(‖x− x∗‖).

If λ1 is the smallest eigenvalue of∇2f(x∗), then this relationship implies, in particular,
that

‖∇f(x)‖∗ ≥ 1
2λ

1/2
1 ‖x− x∗‖(2.7)

for all x near x∗. This inequality and the previous relationship prove (2.6). We can
now complete the proof by noting that since ∇2f is continuous at x∗ and ∇f(x∗) = 0,

f(x) = f(x∗) + 1
2‖∇

2f(x∗)1/2(x− x∗)‖2 + r2(x), r2(x) = o(‖x− x∗‖2).

This relationship, together with (2.6) and (2.7) complete the proof.
Lemma 2.2 shows that there is a neighborhood N(x∗) of x∗ such that if x ∈ N(x∗)

satisfies the convergence test (2.2) with fL = f(x∗), then

‖∇f(x)‖∗ ≤ γ τ1/2 (f(x0)− f(x∗))1/2,(2.8)

where the constant γ is a slight overestimate of 21/2. Conversely, if γ is a slight
underestimate of 21/2, then (2.8) implies that (2.2) holds in some neighborhood of x∗.
Thus, in this sense, the gradient test (2.8) is asymptotically equivalent to (2.2) for
smooth functions.
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Fig. 2.1. Sample performance profile ρs(α) (logarithmic scale) for derivative-free solvers.

2.2. Data Profiles. We can use performance profiles with the convergence test
(2.2) to benchmark optimization solvers for problems with expensive function evalua-
tions. In this case the performance measure tp,s is the number of function evaluations
because this is assumed to be the dominant cost per iteration. Performance profiles
provide an accurate view of the relative performance of solvers within a given number
µf of function evaluations. Performance profiles do not, however, provide sufficient
information for a user with an expensive optimization problem.

Figure 2.1 shows a typical performance profile for derivative-free optimization
solvers with the convergence test (2.2) and τ = 10−3. Users generally are interested
in the best solver, and for these problems and level of accuracy, solver S3 has the
best performance. However, it is also important to pay attention to the performance
difference between solvers. For example, consider the performance profiles ρ1 and ρ4

at a performance ratio of α = 2, ρ1(2) ≈ 55% and ρ4(2) ≈ 35%. These profiles show
that solver S4 requires more than twice the number of function evaluations as solver
S1 on roughly 20% of the problems. This is a significant difference in performance.

The performance profiles in Figure 2.1 provide an accurate view of the perfor-
mance of derivative-free solvers for τ = 10−3. However, these results were obtained
with a limit of µf = 1300 function evaluations and thus are not directly relevant to a
user for which this limit exceeds their computational budget.

Users with expensive optimization problems are often interested in the perfor-
mance of solvers as a function of the number of functions evaluations. In other words,
these users are interested in the percentage of problems that can be solved (for a given
tolerance τ) with κ function evaluations. We can obtain this information by letting
tp,s be the number of function evaluations required to satisfy (2.2) for a given tolerance
τ , since then

ds(α) =
1
|P|

size
{
p ∈ P : tp,s ≤ α

}
is the percentage of problems that can be solved with α function evaluations. As
usual, there is a limit µf on the total number of function evaluations, and tp,s = ∞
if the convergence test (2.2) is not satisfied after µf evaluations.

Griffin and Kolda [12] were also interested in performance in terms of the number
of functions evaluations and used plots of the total number of solved problems as



8 JORGE J. MORÉ AND STEFAN M. WILD

Fig. 2.2. Sample data profile ds(κ) for derivative-free solvers.

a function of the number of (penalty) function evaluations to evaluate performance.
They did not investigate how results changed if the convergence test was changed;
their main concern was to evaluate the performance of their algorithm with respect
to the penalty function.

This definition of ds is independent of the number of variables in the problem
p ∈ P. This is not realistic because, in our experience, the number of function
evaluations needed to satisfy a given convergence test is likely to grow as the number
of variables increases. We thus define the data profile of a solver s ∈ S by

ds(α) =
1
|P|

size
{
p ∈ P :

tp,s
np + 1

≤ α
}
,(2.9)

where np is the number of variables in p ∈ P. We refer to a plot of (2.9) as a data
profile to acknowledge that its application is more general than the one used here
and that our choice of scaling is for illustration only. For example, we note that the
authors in [1] expect performance of stochastic global optimization algorithms to grow
faster than linear in the dimension.

With this scaling, the unit of cost is np + 1 function evaluations. This is a conve-
nient unit that can be easily translated into function evaluations. Another advantage
of this unit of cost is that ds(κ) can then be interpreted as the percentage of problems
that can be solved with the equivalent of κ simplex gradient estimates, np+1 referring
to the number of evaluations needed to compute a one-sided finite-difference estimate
of the gradient.

Performance profiles (2.1) and data profiles (2.9) are cumulative distribution func-
tions, and thus monotone increasing, step functions with a range in [0, 1]. However,
performance profiles compare different solvers, while data profiles display the raw
data. In particular, performance profiles do not provide the number of function eval-
uations required to solve any of the problems. Also note that the data profile for a
given solver s ∈ S is independent of other solvers; this is not the case for performance
profiles.

Data profiles are useful to users with a specific computational budget who need
to choose a solver that is likely to reach a given reduction in function value. The
user needs to express the computational budget in terms of simplex gradients and
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examine the values of the data profile ds for all the solvers. For example, if the user
has a budget of 50 simplex gradients, then the data profiles in Figure 2.2 show that
solver S3 solves 90% of the problems at this level of accuracy. This information is not
available from the performance profiles in Figure 2.1.

We illustrate the differences between performance and data profiles with a syn-
thetic case involving two solvers. Assume that solver S1 requires k1 simplex gradients
to solve each of the first n1 problems, but fails to solve the remaining n2 problems.
Similarly, assume that solver S2 fails to solve the first n1 problems, but solves each of
the remaining n2 problems with k2 simplex gradients. Finally, assume that n1 < n2,
and that k1 < k2. In this case,

ρ1(α) ≡ n1

n1 + n2
, ρ2(α) ≡ n2

n1 + n2
,

for all α ≥ 1 if the maximum number of evaluations µf allows k2 simplex gradients.
Hence, n1 < n2 implies that ρ1 < ρ2, and thus solver S2 is preferable. This is
justifiable because S2 solves more problems for all performance ratios. On the other
hand,

d1(α) =


0, α ∈ [0, k1)

n1

n1 + n2
, α ∈ [k1,∞)

d2(α) =


0, α ∈ [0, k2)

n2

n1 + n2
, α ∈ [k2,∞)

In particular, 0 = d2(k) < d1(k) for all budgets of k simplex gradients where k ∈
[k1, k2), and thus solver S1 is preferable under these budget constraints. This choice
is appropriate because S2 is not able to solve any problems with less than k2 simplex
gradients.

This example illustrates an extreme case, but this can happen in practice. For
example, the data profiles in Figure 2.2 show that solver S2 outperforms S1 with a
computational budget of k simplex gradients where k ∈ [20, 100], though the differ-
ences are small. On the other hand, the performance profiles in Figure 2.1 show that
S1 outperforms S2.

One other connection between performance profiles and data profiles needs to be
emphasized. The limiting value of ρs(α) as α→∞ is the percentage of problems that
can be solved with µf function evaluations. Thus,

ds(κ̂) = lim
α→∞

ρs(α),(2.10)

where κ̂ is the maximum number of simplex gradients performed in µf evaluations.
Since the limiting value of ρs can be interpreted as the reliability of the solver, we see
that (2.10) shows that the data profile ds measures the reliability of the solver (for a
given tolerance τ) as a function of the budget µf .

3. Derivative-Free Optimization Solvers. The selection of solvers S that
we use to illustrate the benchmarking process was guided by a desire to examine the
performance of a representative subset of derivative-free solvers, and thus we included
both direct search and model-based algorithms. Similarly, our selection of solvers
was not guided by their theoretical properties. No attempt was made to assemble
a large collection of solvers, although we did consider more than a dozen different
solvers. Users interested in the performance of other solvers (including SID-PSM [4]
and UOBYQA [19]) can find additional results at www.mcs.anl.gov/~more/dfo. We
note that some solvers were not tested because they require additional parameters
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outside the scope of this investigation, such as the requirement of bounds by imfil
[8, 15].

We considered only solvers that are designed to solve unconstrained optimization
problems using only function values, and with an implementation that is both serial
and deterministic. We used an implementation of the Nelder-Mead method because
this method is popular among application scientists. We also present results for
the APPSPACK pattern search method because, in a comparison of six derivative-free
methods, this code performed well in the benchmarking [7] of a groundwater problem.
We used the model-based trust region code NEWUOA because this code performed well
in a recent comparison [17] of model-based methods.

The NMSMAX code is an implementation of the Nelder-Mead method and is
available from the Matrix Computation Toolbox [13]. Other implementations of the
Nelder-Mead method exist, but this code performs well and has a reasonable default
for the size of the initial simplex. All variations on the Nelder-Mead method update
an initial simplex defined by n+1 points via a sequence of reflections, expansions, and
contractions. Not all of the Nelder-Mead codes that we examined, however, allow the
size of the initial simplex to be specified in the calling sequence. The NMSMAX code
requires an initial starting point x0, a limit on the number of function evaluations,
and the choice of a starting simplex. The user can choose either a regular simplex or
a right-angled simplex with sides along the coordinate axes. We used the right-angled
simplex with the default value of

∆0 = max {1, ‖x0‖∞}(3.1)

for the length of the sides. This default value performs well in our testing. The right-
angled simplex was chosen to conform with the default initializations of the two other
solvers.

The APPSPACK code [10] is an asynchronous parallel pattern search method de-
signed for problems characterized by expensive function evaluations. The code can be
run in serial mode, and this is the mode used in our computational experiments. This
code requires an initial starting point x0, a limit on the number of function evalua-
tions, the choice of scaling for the starting pattern, and an initial step size. We used
unit scaling with an initial step size ∆0 defined by (3.1) so that the starting pattern
was defined by the right-angled simplex with sides of length ∆0.

The model-based trust region code NEWUOA [20, 21] uses a quadratic model
obtained by interpolation of function values at a subset of m previous trial points; the
geometry of these points is monitored and improved if necessary. We used m = 2n+1
as recommended by Powell [20]. The NEWUOA code requires an initial starting point
x0, a limit on the number of function evaluations, and the initial trust region radius.
We used ∆0 as in (3.1) for the initial trust region radius.

Our choice of initial settings ensures that all codes are given the same initial
information. As a result, both NMSMAX and NEWUOA evaluate the function at the
vertices of the right-angled simplex with sides of length ∆0. The APPSPACK code,
however, moves off this initial pattern as soon as a lower function value is obtained.

We effectively set all termination parameters to zero so that all codes terminate
only when the limit on the number of function evaluations is exceeded. In a few cases
the codes terminate early. This situation happens, for example, if the trust region
radius (size of the simplex or pattern) is driven to zero. Since APPSPACK requires a
strictly positive termination parameter for the final pattern size, we used 10−20 for
this parameter.
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4. Benchmark Problems. The benchmark problems we have selected high-
light some of the properties of derivative-free solvers as they face different classes of
optimization problems. We made no attempt to define a definitive set of benchmark
problems, but these benchmark problems could serve as a starting point for further
investigations. This test set is easily available, widely used, and allows us easily
examine different types of problems.

Our benchmark set comprises 22 of the nonlinear least squares functions defined
in the CUTEr [9] collection. Each function is defined by m components f1, . . . , fm of
n variables and a standard starting point xs.

The problems in the benchmark set P are defined by a vector (kp, np,mp, sp) of
integers. The integer kp is a reference number for the underlying CUTEr function, np
is the number of variables, mp is the number of components, and sp ∈ {0, 1} defines
the starting point via x0 = 10spxs, where xs is the standard starting point for this
function. The use of sp = 1 is helpful for testing solvers from a remote starting point
because the standard starting point tends to be close to a solution for many of the
problems.

The benchmark set P has 53 different problems. No problem is overrepresented
in P in the sense that no function kp appears more than six times. Moreover, no pair
(kp, np) appears more than twice. In all cases,

2 ≤ np ≤ 12, 2 ≤ mp ≤ 65, p = 1, . . . , 53,

with np ≤ mp. The distribution of the dimensions np among all 53 problems is shown
in Table 4.1, the median dimension being 7.

Users interested in the precise specification of the benchmark problems in P will
find the source code for evaluating the problems in P at www.mcs.anl.gov/~more/
dfo. This site also contains source code for obtaining the standard starting points xs
and, a file dfo.dat that provides the integers (kp, np,mp, sp).

Table 4.1
Distribution of problem dimensions

np 2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

We use the benchmark set P defined above to specify benchmark sets for three
problem classes: smooth, piecewise smooth, and noisy problems. The smooth prob-
lems PS are defined by

f(x) =
m∑
k=1

fk(x)2.(4.1)

These functions are twice continuously differentiable on the level set associated with
x0. Only two functions (kp = 7, 16) have local minimizers that are not global mini-
mizers, but the problems defined by these functions appear only three times in PS .

The second class of problems mimics simulations that are defined by an iterative
process, for example, solving to a specified accuracy a differential equation where the
differential equation or the data depends on several parameters. These simulations are
not stochastic, but do tend to produce results that are generally considered noisy. We
believe the noise in this type of simulation is better modeled by a function with both
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Fig. 4.1. Plots of the noisy quadratic (4.5) on the box [0.4, 0.6]× [0.9, 1.1]. Surface plots (left)
and level sets (right) show the oscillatory nature of f .

high-frequency and low-frequency oscillations. We thus defined the noisy problems
PN by

f(x) = (1 + εfφ(x))
m∑
k=1

fk(x)2,(4.2)

with εf is the relative noise level and the noise function φ : Rn 7→ [−1, 1] is defined in
terms of the cubic Chebyshev polynomial T3 by

φ(x) = T3(φ0(x)), T3(α) = α(4α2 − 3),(4.3)

where

φ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2).(4.4)

The function φ0 defined by (4.4) is continuous and piecewise continuously differen-
tiable with 2nn! regions where φ0 is continuously differentiable. The composition of
φ0 with T3 eliminates the periodicity properties of φ0 and adds stationary points to
φ at any point where φ0 coincides with the stationary points (± 1

2 ) of T3.
Figure 4.1 illustrates the properties of the noisy function (4.2) when the underlying

smooth function (εf = 0) is a quadratic function. In this case

f(x) = (1 + 1
2‖x− x0‖2)(1 + εfφ(x)),(4.5)

where x0 = [ 12 , 1], and noise level εf = 10−3. The graph on the left shows f on the
two-dimensional box around x0 and sides of length 1

2 , while the graph on the right
shows the contours of f . Both graphs show the oscillatory nature of f , and that f
seems to have local minimizers near the global minimizer. Evaluation of f on a mesh
shows that, as expected, the minimal value of f is 0.99906, that is, 1 − εf to high
accuracy.

Our interest centers on smooth and noisy problems, but we also wanted to study
the behavior of derivative-free solvers on piecewise-smooth problems. An advantage
of the benchmark problems P is that a set of piecewise-smooth problems PPS can be
easily derived by setting

f(x) =
m∑
k=1

|fk(x)|.(4.6)
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These problems are continuous, but the gradient does not exist when fk(x) = 0 and
grad fk(x) 6= 0 for some index k. They are twice continuously differentiable in the
regions where all the fk do not change sign. There is no guarantee that the problems
in PPS have a unique minimizer, even if (4.1) has a unique minimizer. However,
we found that all minimizers were global for all but six functions and that these six
functions had global minimizers only, if the variables were restricted to the positive
orthant. Hence, for these six functions (kp = 8, 9, 13, 16, 17, 18) the piecewise-smooth
problems are defined by

f(x) =
m∑
k=1

|fk(x+)|,(4.7)

where x+ = max(x, 0). This function is piecewise-smooth and agrees with the function
f defined by (4.6) for x ≥ 0.

5. Computational Experiments. We now present the results of computa-
tional experiments with the performance measures introduced in Section 2. We used
the solver set S consisting of the three algorithms detailed in Section 3 and the three
problem sets PS , PN , and PPS that correspond, respectively, to the smooth, noisy,
and piecewise-smooth benchmark sets of Section 4.

The computational results center on the short-term behavior of derivative-free
algorithms. We decided to investigate the behavior of the algorithms with a limit of
100 simplex gradients. Since the problems in our benchmark sets have at most 12
variables, we set µf = 1300 so that all solvers can use at least 100 simplex gradients.

Data was obtained by recording, for each problem and solver s ∈ S, the function
values generated by the solver at each trial point. All termination tolerances were set
as described in Section 3 so that solvers effectively terminate only when the limit µf
on the number of function evaluations is exceeded. In the exceptional cases where the
solver terminates early after k < µf function evaluations, we set all successive function
values to f(xk). This data is then processed to obtain a history vector hs ∈ Rµf by
setting

hs(xk) = min {f(xj) : 0 ≤ j ≤ k} ,

so that hs(xk) is the best function value produced by solver s after k function evalu-
ations. Each solver produces one history vector for each problem, and these history
vectors are gathered into a history array H, one column for each problem. For each
problem, p ∈ P, fL was taken to be the best function value achieved by any solver
within µf function evaluations, fL = mins∈S hs(xµf

).
We present the data profiles for τ = 10−k with k ∈ {1, 3, 5, 7} because we are

interested in the short-term behavior of the algorithms as the accuracy level changes.
We present performance profiles for only τ = 10−k with k ∈ {1, 5}, but a comprehen-
sive set of results is provided at www.mcs.anl.gov/~more/dfo.

We comment only on the results for an accuracy level of τ = 10−5 and use the
other plots to indicate how the results change as τ changes. This accuracy level is
mild compared to classical convergence tests based on the gradient. We support this
claim by noting that (2.8) implies that if x satisfies the convergence test (2.2) near a
minimizer x∗, then

‖∇f(x)‖∗ ≤ 0.45 · 10−2 (f(x0)− f(x∗))1/2
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Fig. 5.1. Data profiles ds(κ) for the smooth problems PS show the percentage of problems
solved as a function of a computational budget of simplex gradients.

for τ = 10−5 and for the norm ‖ · ‖∗ defined in Theorem 2.1. If the problem is scaled
so that f(x∗) = 0 and f(x0) = 1, then

‖∇f(x)‖∗ ≤ 0.45 · 10−2.

This test is not comparable to a gradient test that uses an unscaled norm. It suggests,
however, that for well-scaled problems, the accuracy level τ = 10−5 is mild compared
to that of classical convergence tests.

5.1. Smooth Problems. The data profiles in Figure 5.1 show that NEWUOA

solves the largest percentage of problems for all sizes of the computational budget
and levels of accuracy τ . This result is perhaps not surprising because NEWUOA is a
model-based method based on a quadratic approximation of the function, and thus
could be expected to perform well on smooth problems. However, the performance
differences are noteworthy.

Performance differences between the solvers tend to be larger when the com-
putational budget is small. For example, with a budget of 10 simplex gradients
and τ = 10−5, NEWUOA solves almost 35% of the problems, while both NMSMAX

and APPSPACK solve roughly 10% of the problems. Performance differences between
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Fig. 5.2. Performance profiles ρs(α) (logarithmic scale) for the smooth problems PS .

NEWUOA and NMSMAX tend to be smaller for larger computational budgets. For
example, with a budget of 100 simplex gradients, the performance difference between
NEWUOA and NMSMAX is less than 10%. On the other hand, the difference between
NEWUOA and APPSPACK is more than 25%.

A benefit of the data profiles is that they can be useful for allocating a compu-
tational budget. For example, if a user is interested in getting an accuracy level of
τ = 10−5 on at least 50% of problems, the data profiles show that NEWUOA, NMS-

MAX, and APPSPACK would require 20, 35, and 55 simplex gradients, respectively.
This kind of information is not available from performance profiles because they rely
on performance ratios.

The performance profiles in Figure 5.2 are for the smooth problems with a loga-
rithmic scale. Performance differences are also of interest in this case. In particular,
we note that both of these plots show that NEWUOA is the fastest solver in at least
55% of the problems, while NMSMAX and APPSPACK are each the fastest solvers on
fewer than 30% of the problems.

Both plots in Figure 5.2 show that the performance difference between solvers
decreases as the performance ratio increases. Since these figures are on a logarithmic
scale, however, the decrease is slow. For example, both plots show a performance
difference between NEWUOA and NMSMAX of at least 40% when the performance
ratio is two. This implies that for at least 40% of the problems NMSMAX takes at
least twice as many function evaluations to solve these problems. When τ = 10−5,
the performance difference between NEWUOA and APPSPACK is larger, at least 50%.

5.2. Noisy Problems. We now present the computational results for the noisy
problems PN as defined in Section 4. We used the noise level εF = 10−3 with the
non-stochastic noise function φ defined by (4.3,4.4). We consider this level of noise
to be about right for simulations controlled by iterative solvers because tolerances in
these solvers are likely to be on the order of 10−3 or smaller. Smaller noise levels are
also of interest. For example, a noise level of 10−7 is appropriate for single-precision
computations.

Arguments for a non-stochastic noise function were presented in Section 4, but
here we add that a significant advantage of using a non-stochastic noise function in
benchmarking is that this guarantees that the computational results are reproducible
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Fig. 5.3. Data profiles ds(κ) for the noisy problems PN show the percentage of problems solved
as a function of a computational budget of simplex gradients.

up to the precision of the computations. We also note that the results obtained
with a noise function φ defined by a random number generator are similar to those
obtained by the φ defined by (4.3,4.4); results for the stochastic case can be found at
www.mcs.anl.gov/~more/dfo.

The data profiles for the noisy problems, shown in Figure 5.3, are surprisingly
similar to those obtained for the smooth problems. The degree of similarity between
Figures 5.1 and 5.3 is much higher for small computational budgets and the smaller
values of τ . This similarity is to be expected for direct search algorithms because the
behavior of these algorithm depends only on logical comparisons between function
values, and not on the actual function values. On the other hand, the behavior of
NEWUOA is affected by noise because the model is determined by interpolating points
and is hence sensitive to changes in the function values. Since NEWUOA depends on
consistent function values, a performance drop can be expected for stochastic noise
of magnitudes near a demanded accuracy level.

An interesting difference between the data profiles for the smooth and noisy prob-
lems is that solver performances for large computational budgets tend to be closer
than in the smooth case. However, NEWUOA still manages to solve the largest per-
centage of problems for virtually all sizes of the computational budget and levels of



BENCHMARKING DFO ALGORITHMS 17

Fig. 5.4. Performance profiles ρs(α) (logarithmic scale) for the noisy problems PN .

accuracy τ .
Little similarity exists between the performance profiles for the noisy problems

PN when τ = 10−5, shown in Figure 5.4 and those for the smooth problems. In
general these plots show that, as expected, noisy problems are harder to solve. For
τ = 10−5, NEWUOA is the fastest solver on about 60% of the noisy problems, while
it was the fastest solver on about 70% of the smooth problems. However, the perfor-
mance differences between the solvers are about the same. In particular, both plots
in Figure 5.4 show a performance difference between NEWUOA and NMSMAX of about
30% when the performance ratio is two. As we pointed out earlier, performance dif-
ferences are an estimate of the gains that can be obtained when choosing a different
solver.

5.3. Piecewise-Smooth Problems. The computational experiments for the
piecewise-smooth problems PPS measure how the solvers perform in the presence of
non-differentiable kinks. There is no guarantee of convergence for the tested methods
in this case. We note that recent work has focused on relaxing the assumptions of
differentiability [2].

The data profiles for the piecewise-smooth problems, shown in Figure 5.5, show
that these problems are more difficult to solve than the noisy problems PN and the
smooth problems PS . In particular, we note that no solver is able to solve more
than 40% of the problems with a computational budget of 100 simplex gradients
and τ = 10−5. By contrast, almost 70% of the noisy problems and 90% of the
smooth problems can be solved with this budget and level of accuracy. Differences in
performance are also smaller for the piecewise smooth problems. NEWUOA solves the
most problems in almost all cases, but the performance difference between NEWUOA

and the other solvers is smaller than in the noisy or smooth problems.
Another interesting observation on the data profiles is that APPSPACK solves more

problems than NMSMAX with τ = 10−5 for all sizes of the computational budget. This
in contrast to the results for smooth and noisy problem where NMSMAX solved more
problems than APPSPACK.

The performance profiles for the piecewise-smooth problems PPS appear in Fig-
ure 5.6. The results for τ = 10−5 show that NEWUOA, NMSMAX, and APPSPACK are
the fastest solvers on roughly 50%, 30%, and 20% of the problems, respectively. This
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Fig. 5.5. Data profiles ds(κ) for the piecewise-smooth problems PPS show the percentage of
problems solved as a function of a computational budget of simplex gradients.

performance difference is maintained until the performance ratio is near r = 2. The
same behavior can be seen in the performance profile with τ = 10−1, but now the
initial difference in performance is larger, more than 40%. Also note that for τ = 10−5

NEWUOA either solves the problem quickly or does not solve the problem within µf
evaluations. On the other hand, the reliability of both NMSMAX and APPSPACK in-
creases with the performance ratio, and NMSMAX eventually solves more problems
than NEWUOA.

Finally, note that the performance profiles with τ = 10−5 show that NMSMAX

solves more problems than APPSPACK, while the data profiles in Figure 5.5 show
that APPSPACK solves more problems than NMSMAX for a computational budget of
k simplex gradients where k ∈ [25, 100]. As explained in Section 2, this reversal of
solver preference can happen when there is a constraint on the computational budget.

6. Concluding Remarks. Our interest in derivative-free methods is motivated
in large part by the computationally expensive optimization problems that arise in
DOE’s SciDAC initiative. These applications give rise to the noisy optimization prob-
lems that have been the focus of this work.

We have used the convergence test (2.2) to define performance and data profiles for
benchmarking unconstrained derivative-free optimization solvers. This convergence
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Fig. 5.6. Performance profiles ρs(α) (logarithmic scale) for the piecewise-smooth problems PPS .

test relies only on the function values obtained by the solver and caters to users
with an interest in the short-term behavior of the solver. Data profiles provide crucial
information for users who are constrained by a computational budget and complement
the measures of relative performance shown by performance plots.

Our computational experiments show that the performance of the three solvers
considered varied from problem class to problem class, with the worst performance on
the set of piecewise-smooth problems PPS . While NEWUOA generally outperformed
the NMSMAX and APPSPACK implementations in our benchmarking environment, the
latter two solvers may perform better in other environments. For example, our results
did not take into account APPSPACK’s ability to work in a parallel processing envi-
ronment where concurrent function evaluations are possible. Similarly, since our test
problems were unconstrained, our results do not readily extend to problems containing
hidden constraints.

This work can be extended in several directions. For example, data profiles can
also be used to benchmark solvers that use derivative information. In this setting we
could use a gradient-based convergence test or the convergence test (2.2). Below we
outline four other possible future research directions.

Performance on larger problems. The computational experiments in Section
5 used problems with at most np = 12 variables. Performance of derivative-free solvers
for larger problems is of interest, but this would require a different set of benchmark
problems.

Performance on application problems. Our choice of noisy problems is a
first step toward mimicking simulations that are defined by an iterative process, for
example, solving a set of differential equations to a specified accuracy. We plan to
validate this claim in future work. Performance of derivative-free solvers on other
classes of simulations is also of interest.

Performance of other derivative-free solvers. As mentioned before, our
emphasis is on the benchmarking process, and thus no attempt was made to assemble
a large collection of solvers. Users interested in the performance of other solvers can
find additional results at www.mcs.anl.gov/~more/dfo. Results for additional solvers
can be added easily.

Performance with respect to input and algorithmic parameters. Our
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computational experiments used default input and algorithmic parameters, but we
are aware that performance can change for other choices.
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